
Martin Hammitzsch, Angelina Kraft (TIB, 13. July 2018)
Recordings: doi.org/10.5446/37831, /37830 & /37829
FAIR Data & Software (Carpentries-based workshop) #TIBFDS

FAIR licences for data & software

https://github.com/TIBHannover/2018-07-09-FAIR-Data-and-Software
https://av.tib.eu/media/37831
https://av.tib.eu/media/37830
https://av.tib.eu/media/37829
https://tibhannover.github.io/2018-07-09-FAIR-Data-and-Software/
https://twitter.com/search?q=%23TIBFDS

Seite 2

R1. (meta)data have a plurality of accurate and relevant attributes

R1.1 (meta)data are released with a clear and accessible data usage licence

R1.2 (meta)data are associated with their provenance

R1.3 (meta)data meet domain-relevant community standards

to be Re-usable

https://docs.google.com/presentation/d/1Ma-hctXcE6AkqdfoHSFrEH9W98V9pnjrav3Zz3DFSrc/edit#slide=id.g395791b5e0_0_104
http://www.einfracentral.eu/news/einfracentral-and-fair-principles

Licensing agenda

1. Data licensing

2. Software licensing

Disclaimer: We are not lawyers and
nothing in this presentation is intended as
legal advice. When in doubt, ask your
institution’s / employer’s / funder’s legal
counsel.

3. Lunch

4. Wrap-up & discussion

Seite 4

▪ E.g. governmental sources: data are often facts → belong in Public Domain:

▪ Research Data: “As open as possible, as closed as necessary” (new EU H2020 credo)

→ there is a shift from ‘open data’ towards ‘FAIR data’

→ FAIR does not necessarily mean open

▪ Special protection & ethical questions regarding ‘sensitive’ data & ‘mission oriented
research’

▪ For data accompanying scientific publications: Creative Commons licences recommended

Data

and many
more ...

Seite 5

(Some) Legal considerations when dealing with
 research data ...

Research
Data

Contract
law

Constitutional
law

Data
privacy laws

Copy
right

Sui generis
database

right

Patent law

Business /
trade law

… and more /
less depending
on the country /
federal state you
are based in or
people you
cooperate with ...

Seite 6

→ Depending on country / state / employer and the repository you are using
→ When in doubt, check with your institution's/employer’s/funder’s legal counsel

Software: creative work (mostly)!
 ⇕
Data: facts, sometimes protected by ‘creativity’ or other regulations (e.g. personal data),
sometimes not!

Example Copyright (Germany: UrhG)
→ Quantitative data (with reproduction in mind): usually not protected
→ Qualitative data: capable of being protected (more complex, more probability)

Fact: Most data repositories offer Copyright & Creative Commons licences

Check https://re3data.org - Filter ‘Data licences’
→ What do you find?

Data Rights & Policies

http://www.gesetze-im-internet.de/urhg/
https://re3data.org

Seite 7

Licensing at repository level - Open licenses
Use: → A license grants an exploitation right to a (digital) resource

https://opendefinition.org/

Seite 8

List of frequently offered & used (data) licences

licence Meaning Abbreviation

Copyright German Copyright Code and others (§87a UrhG);
country specific; re-use for private cases only, no
modification, permission needed

©

Public Domain Data is ‘free from copyright’ CC-licence CC0 v1.0 Universal,

Creative Commons allows re-use under certain restrictions, e.g. citation
and same attributes and/or non-commercial

CC BY, CC BY-ND, CC BY-SA, CC
BY-NC, CC BY-NC-SA, CC
BY-NC-ND

Open Data
Commons

3 variations:
Open Data Commons Attribution licence
Open Data Commons Public Domain Dedication &
licence
Open Data Commons Open Database licence

ODC
ODC-By v1.0
PDDL
ODbL

Note: The are many more licences, sometimes country-specific! (e.g. OGLC - Open Government licence
Canada)

Other licences in re3data.org refer e.g. to MIT, (new) BSD, or Apache licences … these are
primarily software licences and will be covered in the following slides.

Note: Some ‘data’ repositories also offer ‘software’ licences, as they treat data as software!

http://www.gesetze-im-internet.de/englisch_urhg/englisch_urhg.html#p0555
http://wiki.creativecommons.org/CC0_use_for_data
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://opendatacommons.org/
https://opendatacommons.org/licenses/by/
https://opendatacommons.org/licenses/pddl/
https://opendatacommons.org/licenses/odbl/
https://www.re3data.org/

Creative Commons Attribution 3.0 Germany
https://creativecommons.org/licences/by/3.0/de/deed.en

Which questions do you have for us?
Contact information:
Angelina.Kraft@TIB.eu

mailto:Angelina.Kraft@tib.eu

Licensing agenda

1. Data licensing

2. Software licensing

Disclaimer: We are not lawyers and
nothing in this presentation is intended as
legal advice. When in doubt, ask your
institution’s / employer’s / funder’s legal
counsel.

3. Lunch

4. Wrap-up & discussion

Seite 11

Why Open Source licenses?

Seite 12

Hey there!

- Which software licenses do you know?

- What are software licenses good for?

- When do licenses matter (use cases)?

- Who benefits from software licenses and how (roles)?

- Who has been licensing software before?

Seite 13

Copyright and licensing

- Copyright
- Copyright protects the expression of an idea (in source code and object code)
- Copyright gives the owner certain exclusive rights

- The right to copy the software
- The right to create derivative works
- The right to distribute copies of the software

- Copyright gives the end user almost no rights
- Not allowed to copy
- Not allowed to modify
- Not allowed to distribute

… unless the copyright owner says it’s OK

- A license is a way for a copyright holder to grant rights to other people
- Every piece of software you use is covered by a license (hopefully)
- Your end users are covered by whatever license you place on software you write

Seite 14

Licensing issues

- Development of complex open source solutions is generally done by adapting
and integrating multiple existing components
- The resulting application (or “solution”) may look as a single program from the user point of

view, but is in fact a combined work
- The different components may be covered by different licences
- Are they compatible and legally interoperable?

- Determining whether the various licences involved are compatible is important
when the aim is to redistribute the application to third parties
- Under what open source licence should it be distributed?
- Is this always possible?

Seite 15

Two worlds

- Licences for distributing free or open source software (FOSS) are divided in
two families

- Copyleft licenses
- “The world is evil”

- Permissive licenses
- “The world is good”

Seite 16

Copyleft or “viral” licenses

- Impose the use of the same licence as soon the distributed work is a
derivative of the covered work
- Allow open distribution, modification, and re-use of the code (with attribution)
- Insist that any derivative works be distributed under the same terms

- if the original work, even modified or improved, is re-distributed, the same licence must
be applied

- both the original and the new work are Open Source; the copyleft license simply ensures
that property is perpetuated to all downstream derivatives

- Disables proprietary derivatives by third parties (unless the copyright holder gives permission)
- a majority of open source projects have adopted copyleft licensing terms to avoid

software appropriation by third parties
- the commercial use and derivation by anyone is permitted, as long as the terms of the

license are honored
- For example the two GNU GPLs and the EUPL are copyleft

Seite 17

Permissive or "anything goes" licenses

- Is simply a non-copyleft open source license
- Generally compatible and interoperable with most other licences, tolerating to

merge, combine or improve the covered code and to re-distribute it under
many licences

- Place very few restrictions on what can be done with the code

- Permit using the code in non-free or proprietary derivative works

- Require only attribution in a specified manner

- For example BSD-style, MIT/X11-style, ASLv2 are permissive

Seite 18

Purpose of a licence

- Share openly
- Practice Open Science and FAIR from start

- Protect and restrict the use
- Disallow commercialization or any other further use
- Enable commercialization

- Get credit and acknowledgement
- Amount of use and citations

- Implement successive sharing
- Refuse warranties
- Refuse liability
- Clarify which license is best for you and other stakeholders
- Deliver a contract with your work

Seite 19

License requirements by FSF

1. The freedom to run the program as you wish, for any purpose (freedom 0).
2. The freedom to study how the program works, and change it so it does your

computing as you wish (freedom 1). Access to the source code is a
precondition for this.

3. The freedom to redistribute copies so you can help others (freedom 2).
4. The freedom to distribute copies of your modified versions to others

(freedom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.

→ https://www.gnu.org/philosophy/free-sw.html

https://www.gnu.org/philosophy/free-sw.html

Seite 20

License requirements (OSD) by OSI

1. Free redistribution
2. Source code provision
3. Derived works / modifications
4. Integrity of author's source code
5. No discrimination against persons or groups
6. No Discrimination against fields of endeavor
7. Distribution of license
8. License must not be specific to a product
9. License must not restrict other software

10. License must be technology-neutral

→ https://opensource.org/docs/osd

https://opensource.org/docs/osd

Seite 21

License requirements of the EC
1. Grant all Free (or Open Source) software freedoms;
2. Ensure protection from exclusive software appropriation

(therefore be a “share alike” or “copyleft” licence);
3. Have working value in all official EU languages (so there is no need for sworn

translators in Court and related institutions for translations);
4. Conform with European copyright law and terminology;
5. Include the “communication to the public” right, including Web distribution /

Software as a Service - SaaS;
6. Clarify the applicable law and competent court, as requested by EU

institutions;
7. Approach warranties and liability in conformity with “Case law” (a general

exclusion of liability is not valid before most European courts);
8. Not be too long, too complex, but be comprehensive and pragmatic.

→ http://dx.doi.org/10.5033/ifosslr.v5i2.91

http://dx.doi.org/10.5033/ifosslr.v5i2.91

Seite 22

Content or coverage of licenses - an attempt

- Licenses may cover
- Definitions
- Scope
- Distribution, provision, communication
- Copyright
- Obligations (attribution, copyleft, compatibility, provision, legal protection)
- Authorship
- Disclaimer (warranty, liability)
- Additional agreements
- Acceptance
- Information
- Termination
- Legal issues (jurisdiction, applicable law, miscellaneous)

- Sounds like a contract :-(

Seite 23

Which Open Source licenses?

Seite 24

GNU is not a licence - be specific

- GNU is not UNIX → continue reading at https://en.wikipedia.org/wiki/GNU
- GNU is an operating system and an extensive collection of computer software
- GNU is composed wholly of free software most of which is licensed under the GNU Project's

own GPL
- GPL, LGPL and AGPL are part of a license family

- Name the licence and its version
- Integrate license text
- Refer to license source

Seite 25

Open Source Initiative (OSI) and others help

- Stewards of the Open Source Definition (OSD)
- Community-building, education, public advocacy to promote awareness and the importance of

non-proprietary software
- Standards body, maintaining the OSD

- Community-recognized body for reviewing and approving licenses as OSD-conformant
(approved licenses)

- Licenses must go through the Open Source Initiative's license review process to be approved
- OSI Approved License trademark and program creates a nexus of trust
- Approved Licenses (>80)

- By category → https://opensource.org/licenses/category
- By name → https://opensource.org/licenses/alphabetical
- Including other resources, e.g. TLDRLegal, OSSWatch License Diff, Choosealicense,

Choosing a license by Civic Commons

https://opensource.org/licenses/category
https://opensource.org/licenses/alphabetical
https://tldrlegal.com/
http://oss-watch.ac.uk/apps/licdiff/
https://choosealicense.com/
http://wiki.civiccommons.org/Choosing_a_License/

Seite 26

Popular (and noteworthy unknown) copyleft licenses

- GNU General Public License (GPL)
- The copyleft applies to all software based on GPLed code

- GNU Library or "Lesser" General Public License (LGPL)
- The copyleft applies to any library based on LGPLed code

- Eclipse Public License (EPL)
- The copyleft applies to any module containing EPLed code

- Mozilla Public License 2.0 (MPL)
- The copyleft applies to any files containing MPLed code

- Common Development and Distribution License (CDDL)
- The copyleft applies to source code files containing CDDLed code

- GNU Affero General Public License (AGPL)
- European Union Public Licence (EUPL)

Seite 27

Popular permissive licenses

- Apache (Software) License 2.0
- BSD 3-Clause "New" or "Revised" license
- BSD 2-Clause "Simplified" or "FreeBSD" license
- MIT license

Seite 28

MIT

- Copyright
- Permission
- Attribution and notice on

permissions
- Warranty and

Liability disclaimer

https://opensource.org/licenses/MIT

Seite 29

BSD 2-clause

- Copyright
- Permission
- Attribution and notice on

conditions and disclaimer
- Warranty and

Liability disclaimer

https://opensource.org/licenses/BSD-2-Clause

Seite 30

BSD 3-clause

- Copyright
- Permission
- Attribution and notice on

conditions and disclaimer
- Promotion
- Warranty and

Liability disclaimer

https://opensource.org/licenses/BSD-3-Clause

Seite 31

Apache License version 2.0

- Definitions
- Grant of Copyright License
- Grant of Patent License
- Redistribution
- Submission of Contributions
- Trademarks
- Disclaimer of Warranty
- Limitation of Liability
- Accepting Warranty or

Additional Liability
- APPENDIX: How to apply the

Apache License to your work

https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/Apache-2.0

Seite 32

GPLv3
- Preamble
- Definitions
- Source Code
- Basic Permissions
- Protecting Users' Legal Rights From

Anti-Circumvention Law
- Conveying Verbatim Copies
- Conveying Modified Source Versions
- Conveying Non-Source Forms
- Additional Terms
- Termination
- Acceptance Not Required for Having Copies
- Automatic Licensing of Downstream Recipients
- Patents
- No Surrender of Others' Freedom
- Use with the GNU Affero General Public License
- Revised Versions of this License
- Disclaimer of Warranty
- Limitation of Liability
- Interpretation of Sections 15 and 16
- How to Apply These Terms to Your New Programs

https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0

Seite 33

LGPLv3

- Incorporates the terms and
conditions of GPLv3

- Additional Definitions
- Exception to Section 3 of

the GNU GPL
- Conveying Modified Versions
- Object Code Incorporating

Material from
Library Header Files

- Combined Works
- Combined Libraries
- Revised Versions of the

GNU Lesser General Public License

https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0
https://opensource.org/licenses/LGPL-3.0

Seite 34

AGPLv3
- Preamble
- Definitions
- Source Code
- Basic Permissions
- Protecting Users' Legal Rights From

Anti-Circumvention Law
- Conveying Verbatim Copies
- Conveying Modified Source Versions
- Conveying Non-Source Forms
- Additional Terms
- Termination
- Acceptance Not Required for Having Copies
- Automatic Licensing of Downstream Recipients
- Patents
- No Surrender of Others' Freedom
- Remote Network Interaction;

Use with the GNU General Public License
- Revised Versions of this License
- Disclaimer of Warranty
- Limitation of Liability
- Interpretation of Sections 15 and 16
- How to Apply These Terms to Your New Programs

https://opensource.org/licenses/AGPL-3.0
https://opensource.org/licenses/AGPL-3.0

Seite 35

EUPLv1.2

- Definitions
- Scope of the rights granted by

the Licence
- Communication of the Source Code
- Limitations on copyright
- Obligations of the Licensee
- Chain of Authorship
- Disclaimer of Warranty
- Disclaimer of Liability
- Additional agreements
- Acceptance of the Licence
- Information to the public
- Termination of the Licence
- Miscellaneous
- Jurisdiction
- Applicable Law
- Appendix ‘Compatible Licences’

https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-11-12

Seite 36

EUPLv1.2 - uniqueness
- First open source licence to be released by an international governing body
- Legally consistent with the copyright law of all EU countries

- Considers the specificity and diversity of Member States Law and the Community Law (copyright terminology,
information, warranty, liability, applicable law and jurisdiction)

- Legal instrument, as it has been elaborated in respect of European law requirements and has legal value in 23
European languages, no similar example exists in the world

- Covers data, documents, technical specifications and standards, as well as software source codes
(broad coverage)

- Compatible with a wide range of other open source licences, integrates interoperable solutions to
possible licence conflicts

- Ensures downstream compatibility issues with the most relevant other licences, e.g. to merge the work in a
larger work with other software components covered by compatible licences (wider compatibility)

- Creates a new category of F/OSS licence: "Copyleft compatible" (other are: "Strong copyleft", "Weak copyleft"
and "Without copyleft" / “Permissive”)

- Allows addition of provisions, as long as these do not contradict the licence itself, e.g. users can add
a reference to a specific law that is to be applied, choose a court for arbitration, etc. (more flexibility)

→ https://joinup.ec.europa.eu/collection/eupl/how-use-eupl
→ http://dx.doi.org/10.5033/ifosslr.v5i2.91

https://joinup.ec.europa.eu/collection/eupl/how-use-eupl
http://dx.doi.org/10.5033/ifosslr.v5i2.91

Seite 37

What matters?

Seite 38

Licence compatibility

- Licence incompatibility exists when a program is derivative of components
licensed under two different copyleft licenses
- for example, the GPLv2, which is still the most used copyleft licence, is not compatible with

GPLv3, and vice-versa

- Compatibility matrices and information exist that help practically, e.g. for
- GPL: https://www.gnu.org/licenses/license-list.en.html
- EUPL: https://joinup.ec.europa.eu/collection/eupl/eupl-compatible-open-source-licences
- BSD: https://en.wikipedia.org/wiki/BSD_licenses

https://www.gnu.org/licenses/license-list.en.html
https://joinup.ec.europa.eu/collection/eupl/eupl-compatible-open-source-licences
https://en.wikipedia.org/wiki/BSD_licenses

Seite 39

Two ways of licence compatibility

- Upstream compatibility
- Allows you to merge a work covered by another F/OSS license into a larger work that you may

distribute under a license you want to select, e.g. the EUPL
- This is the main scope of a compatibility matrix, and
- This is the scope of a licence clause for variable compatibility, e.g in the EUPL

- Downstream compatibility
- Allows you to merge the work received under a specific license, e.g. the EUPL, into a larger

work that you may distribute under a compatible license
- This is the scope of a licence appendix with a compatibility / exception list

Seite 40

Upstream compatibility for EUPL

Seite 41

Upstream compatibility for GPL

Seite 42

Help for upstream compatibility

→ https://en.wikipedia.org/wiki/License_compatibility
→ https://en.wikipedia.org/wiki/GNU_General_Public_License

https://en.wikipedia.org/wiki/License_compatibility
https://en.wikipedia.org/wiki/GNU_General_Public_License

Seite 43

Downstream - variable compatibility

- For example EUPL, 5. Obligations of the Licensee
- Compatibility clause: If the Licensee Distributes or Communicates Derivative Works or copies

thereof based upon both the Work and another work licensed under a Compatible Licence, this
Distribution or Communication can be done under the terms of this Compatible Licence. For
the sake of this clause, ‘Compatible Licence’ refers to the licences listed in the appendix
attached to this Licence. Should the Licensee's obligations under the Compatible Licence
conflict with his/her obligations under this Licence, the obligations of the Compatible Licence
shall prevail.

- Appendix “Compatible Licences” according to article 5 EUPL are:
- GNU General Public License (GPL) v. 2, v. 3; GNU Affero General Public License (AGPL) v. 3;

Open Software License (OSL) v. 2.1, v. 3.0; Eclipse Public License (EPL) v. 1.0; CeCILL v.
2.0, v. 2.1; Mozilla Public Licence (MPL) v. 2; GNU Lesser General Public Licence (LGPL) v.
2.1, v. 3; Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for works
other than software; European Union Public Licence (EUPL) v. 1.1, v. 1.2; Québec Free and
Open-Source Licence; Reciprocity (LiLiQ-R) or Strong Reciprocity (LiLiQ-R+)

Seite 44

Exception list in general

- Alternative way to resolve incompatibility issues without the risk of forking is
the constitution of an exception list
- Advantage is to maintain the licensed component under a single licence including its specific

derivatives, while
- Allowing combined derivative works where the component is integrated or merged to be

licensed under an alternate licence
- The difference with the more permissive LGPL system is that exception lists

specify which licence(s) are accepted (not “any” licence)

Seite 45

Exception list at license level and/or by licensor

- Exception lists can be implemented at licence level
- Specifies which licences can be used in case of “combined derivative” when the program is a

derivative of both a EUPLed component and another component licensed under a compatible
licence

- The disadvantage of such practice is that it does not facilitate very frequent updates: adapting
the list modifies the licence and impact its whole community of users
- Adapting: In case a compatible licence is updated with a new version number
- Modifying: Producing a new version that will not be automatically OSI-approved
- Impact: Some of the community may disagree with the extension

- Exception lists can also (and in addition) be implemented by a specific
licensor
- This is especially recommended when a licensor distributes a library of components under a

copyleft licence
- Similarly, a licensor could distribute a library of components under the EUPL and implement an

exception list for some licences that are not in the EUPL compatibility list (for example the
GPLv3 in EUPL 1.1)

Seite 46

Dual licensing in the Open Source world

- Multi-licensing is the practice of distributing software under two or more
different sets of terms and conditions (Wikipedia)
- This may mean multiple different software licenses or sets of licenses
- Prefixes may be used to indicate the number of licenses used, e.g. dual-licensed for software

licensed under two different licenses
- A logical incompatibility issue may be resolved through dual licensing

- The original licensor (owning full copyright) may provide the same program under two or more
licences, even if these licenses are not compatible.

- The most frequent cases apply to licensors distributing their work
- under the “GPL” (without mentioning the version number) or
- with the comment “either version 2 of the License, or (at your option) any later version”
- in such case, recipients can use the work under any of these licences (GPLv2 or GPLv3),

which is in practice a dual licensing

Seite 47

Dual licensing in the proprietary world

- Copyleft licenses like GPL and AGPL are also sometimes used by vendors as
part of a dual licensing business model
- Whereby they release the code under a copyleft license, but can also sell per-copy exclusive

licenses to organizations that want to use or redistribute the software under proprietary terms
- Note that “proprietary” is not the same as “commercial”

- Commercial use is already permitted (to all parties) by all open source licenses, and this right
does not go away in a dual-licensing arrangement

- Proprietary is when a licensee wishes to redistribute the software (perhaps as part of some
larger offering) under non-open-source terms

- The licensors as the copyright holder are the only ones who could conceivably sue for
copyright infringement, and thus they can agree for a fee not to sue.

- That is what is being sold on the proprietary side of a dual-licensing arrangement: permission
to redistribute the software under terms that would otherwise be incompatible with its open
source license.

Seite 48

License provisions

- There are questions regarding software licenses in general when scientific
results - such as figures or numbers - produced by software are used to
publish findings in papers or scientific journals
- It would be highly beneficial if a software license would cover this case so that the source code

has to be provided for any modified version of a software that is not distributed but that is used
to produce results which are presented in a scientific paper

- AFAIK, no well-known software license is covering this case so far

- Is it possible to release software under a license so that the source code has
to be provided when modified versions are used by others to produce results
and findings which are then presented in scientific papers?

Seite 49

License provisions - example
/*
 * EasyWave - A realtime tsunami simulation program with GPU support.
 * Copyright (C) 2014 Andrey Babeyko, Johannes Spazier
 * GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de)
 *
 * Parts of this program (especially the GPU extension) were developed
 * within the context of the following publicly funded project:
 * - TRIDEC, EU 7th Framework Programme, Grant Agreement 258723
 * (http://www.tridec-online.eu)
 *
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved by
 * the European Commission - subsequent versions of the EUPL (the "Licence"),
 * complemented with the following provision: For the scientific transparency
 * and verification of results obtained and communicated to the public after
 * using a modified version of the work, You (as the recipient of the source
 * code and author of this modified version, used to produce the published
 * results in scientific communications) commit to make this modified source
 * code available in a repository that is easily and freely accessible for a
 * duration of five years after the communication of the obtained results.
 *
 * You may not use this work except in compliance with the Licence.
 *
 * You may obtain a copy of the Licence at:
 * https://joinup.ec.europa.eu/software/page/eupl
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the Licence is distributed on an "AS IS" basis,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the Licence for the specific language governing permissions and
 * limitations under the Licence.
 */

Copyright

Project

License

Additional
Provision

Seite 50

Flexibility of licenses and own additions

- Flexibility integrated in licenses is a game changer
- Resolving incompatibility is easier

- Dual licensing
- “... or any later version”, e.g. for GPL and EUPL

- Exception list
- Appendix and clauses enabling compatible licenses for legal interoperability when licenses are

incompatible and the other licenses follow the same spirit
- Special cases

- Larger Work including another, existing GPL work, e.g. for MPLv2

- Own additions and extensions may result in a new license
- Incompatibility and practical issues for users
- Be careful and make changes only following the license

Seite 51

Patents

- Copyright protection is only provided to expressions and exempt to ideas,
procedures or operational/computing methods

- Patents may cover ideas, procedures and operational methods

Seite 52

Patents
- Practice

- Have been granted that cover functionality in many common software applications
- Pose a specific risk to the development of software because they protect the idea or the

method and not simply the form, as copyright does
- It is possible to infringe some patent without copying anything or without even knowing it

- Impact
- Users are rarely subject to legal action for patent infringement
- Developers and software licensors must almost always be notified first, prior to legal action

seeking damages, thus giving them an opportunity to replace or remove the functionality that is
possibly patented

- Risk
- Related to higher costs for replacing functionality, rather than the direct costs of being

subjected to patent lawsuits
- Appear to be higher for proprietary software, where commercial interests are higher, than for

Open Source distribution

Seite 53

Software patents

- A software patent is a patent on a piece of software, such as a computer
program, libraries, user interface, or algorithm (Wikipedia)

- There is no legal or conclusive definition for a software patent
- Different countries have different restrictions on patenting software

innovations
- Examples are MP3 audio or the LZW data compression
- Known software patents have halted software development specific areas
- No Free / Open Source software has yet been subject to legal action for

patent infringement

Seite 54

Software patents and software licenses

- Grant liberal copyright and patent licenses allowing for free use, modification,
distribution, and exploitation of the work

- A patent retaliation clause protects an auxiliary distributor's further recipients
against patent trolling

- Covered in licenses such as
- Apache License version 2
- Eclipse Public License
- Mozilla Public License version 2 (MPLv2)
- Common Development and Distribution License (CDDL)

Seite 55

Termination of license and law enforcement

- More or less individual case by case decisions, a few or no general court
rulings?

- Financial resources, language and legal framework are issues
- Financial and ideological interests as well as principles and impact matter
- Individual actions are problematic

- Purpose of law enforcement and impact
- Lack of financial resources and/or power
- Business model

- Foundations may help
- Initiate friendly contact and continue with contact on pain of penalties as well as law

enforcement (financial resources and)
- Translations and specific license articles may help, e.g. EUPL within Europe

Seite 56

Licenses and coding?

Seite 57

How does coding happen

- Normally you “just” start with 10 lines of code
- You “just” start sharing the code or script with a colleague
- Then the code base may grow slightly, and from time to time because you or your colleagues

find it useful and have further requirements and wishes
- Either it grows just by your work or others contribute somehow
- You end up with much more than initially intended or foreseen

- Normally you “just” contribute with
- Code snippets send by mail (yes, this happens - quite often)
- Pull requests

- Seldom you start a complex software project on purpose
- Either based on existing work to create a larger work
- Or from scratch with greenfield approach
- It does not “just” happen

Seite 58

Practices

- Practice Open Science, be open from the beginning
- Select and attach a license and include licence headers

- Wait and think a bit, but not too long
- Include a boilerplate for “All rights reserved” as a placeholder for licence headers
- Then decide having in mind a specific purpose
- Select and attach a license and include licence headers

- Postpone
- Clarify use of libraries and their licenses
- Check licenses under pressure and in a hurry
- Do in a relatively short time what could have been done over the time

- ...

Seite 59

Dependencies

- Consider dependencies
- Libraries used and their dependencies
- Contract of employment or similar agreements
- Contracts and agreements as part of the works, e.g. partnerships in research projects

- Consortium Agreement regulating IPR issues
- Memorandum of Understanding

- Cooperation on working level
- Resolve dependencies

- Check compatibility
- Get in touch and talk!
- Select and attach a license
- Establish Contributor License Agreements (CLAs) and Developer Certificate of Origin (DCO)

from the beginning, e.g. Eclipse Foundation
→ https://www.eclipse.org/legal/ECA.php
→ https://www.eclipse.org/legal/DCO.php

- Re-implement problematic libraries

https://www.eclipse.org/legal/ECA.php
https://www.eclipse.org/legal/DCO.php

Seite 60

Did we ask: Licenses and coding?

- What about your programming languages?
- Python

- Python Software Foundation (PSF) license (PSFL) → https://docs.python.org/3/license.html
see also the licenses and acknowledgements for incorporated software

- Non-reusable licenses* → https://opensource.org/licenses/category
* Licenses in this group are specific to their authors and cannot be reused by others
→ https://opensource.org/proliferation-report

- R, CRAN
- GPL and BSD license families

→ https://www.r-project.org/Licenses/ for R and https://cran.r-project.org/web/licenses/ for CRAN
- Java

- Legal case within the United States “Oracle America, Inc. v. Google, Inc.”
US$8.8 billion in damages due to the commercial success of the Android system
→ https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.

- It’s about copyrightability of APIs, fair use, and impact on open mimics of existing APIs
- Linux is fully open sourced, it is based on POSIX, a set of APIs that mimic those of the commercial Unix operating system
- Storage technology company SwiftStack uses the APIs from Amazon's various cloud services to ensure compatibility
- ...

https://docs.python.org/3/license.html
https://opensource.org/licenses/category
https://opensource.org/proliferation-report
https://www.r-project.org/Licenses/
https://cran.r-project.org/web/licenses/
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.

Seite 61

Best practices for license handling

Seite 62

Best practices for license headers
- Ensure corporate identity

- Add copyright information with
names of institutes and authors

- Add name and description of
the software

- Provide additions, e.g.
- Information on funding and/or

projects
- URLs for further information

- Provide license information or
“All rights reserved” information
until license decision
(e.g. → Adobe)

- Provide what matters but
keep it short and consistent

/*
 * EasyWave - A realtime tsunami simulation program with GPU support.
 * Copyright (C) 2014 Andrey Babeyko, Johannes Spazier
 * GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de)
 *
 * Parts of this program (especially the GPU extension) were developed
 * within the context of the following publicly funded project:
 * - TRIDEC, EU 7th Framework Programme, Grant Agreement 258723
 * (http://www.tridec-online.eu)
 *
 * Licensed under the EUPL, Version 1.1 or - as soon they will be approved by
 * the European Commission - subsequent versions of the EUPL (the "Licence"),
 * complemented with the following provision: For the scientific transparency
 * and verification of results obtained and communicated to the public after
 * using a modified version of the work, You (as the recipient of the source
 * code and author of this modified version, used to produce the published
 * results in scientific communications) commit to make this modified source
 * code available in a repository that is easily and freely accessible for a
 * duration of five years after the communication of the obtained results.
 *
 * You may not use this work except in compliance with the Licence.
 *
 * You may obtain a copy of the Licence at:
 * https://joinup.ec.europa.eu/software/page/eupl
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the Licence is distributed on an "AS IS" basis,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the Licence for the specific language governing permissions and
 * limitations under the Licence.
 */

https://github.com/akamai/BlazeDS/blob/master/modules/core/src/java/flex/management/package-info.java

Seite 63

Best practices for license handling in SW packages

- LICENCE and README files
- Git clone and local copies vs. GitHub

- doc/licences/
- Include licenses.{md|txt|html} listing libraries used and their licenses (eventually with URLs)
- Include copies of license texts

- Ensure attribution
- Name the authors and institutes of libraries etc.

- Include copyright and license header in code files

Seite 64

Best practices for copy-and-pasted code snippets

- Clarify use for copy and paste snippets
- Forums, blogs and websites

- Stackoverflow forces CC-BY-SA for contributions → https://stackoverflow.com/help/licensing
- Blogs and websites do not talk about licensing most likely: that’s an issue

- Search for information
- Ask for permission to use it with an specific licence
- Create awareness

- Trace quick and dirty solutions (in terms of legal aspects)
with comments in the source code
- URL of the source, and
- License information and attribution, if available or
- FIXME, TODO, CHECK … whatever you want to indicate that this part needs a license check

(be consistent to find it again quickly when it’s time to talk about licenses)

https://stackoverflow.com/help/licensing

Seite 65

Best practices for code contributions

- Issues
- How does a project get the legal right to redistribute some contributor’s code changes?
- How does a project know the contributor won’t sue later for copyright infringement?

- Legally accept code and documentation contributions
- License header is integrated and follows the licensing of the larger work → works for files
- Obtain Contributor License Agreement (CLA) → works for snippets, patches, pull requests

- With a CLA a contributor
- Gives the project rights formally, by signing an agreement saying that the project can

redistribute the contributed code
- Retains copyright, but promises not to exercise most of the powers that copyright ownership

would ordinarily imply
- Enables the project to feel safe in accepting the contribution
- Has to do this once per project

- CLA covers not only the current contribution but all subsequent ones, so the
form is only requested with someone’s first contribution
- Examples: http://wiki.civiccommons.org/Contributor_Agreements/

http://wiki.civiccommons.org/Contributor_Agreements/

Seite 66

Software publications

Seite 67

Hey there!

- What is a software publication?

- Is there anyone who has published software before?

- Which distribution channel has been used or which do you know?

- Why do software publications matter?

- Who benefits from software publications?

Seite 68

Why opening software and source code matters?

- Ensure the sustainability and verifiability of research software development as part of
research processes;

- Improve the perception of the role of software in research as the foundation of
publications and research data, as well as the link between them;

- Open up of research software as a key building block in Open Science;
- Link software publications to the scientific reputation system through consistent

application of DOIs, referencing, metrics and reviews;
- Support the professionalization of software development in research through trainings,

and the application of minimally necessary best practices from software engineering;
- Establish research software engineering as an essential core competence, especially

among young scientists, the next generation of researchers;
- Integrate research software engineering with higher-level activities, e.g., in the context

of e-Science and e-Infrastructures

→ http://www.de-rse.org/en/aims.html

http://www.de-rse.org/en/aims.html

Seite 69

Why opening software and source code matters?

Until there is a radical change in the way that academic credit is given, the
principal record of scientific research is still the peer-reviewed publication.
Given that software is a fundamental part of doing science in the digital age, the
question we are often asked is: where can I publish papers which are primarily
focused on my scientific software?

-- Neil Chue Hong

Seite 70

Software journals and repositories
- Software journals

- Use individual policies for software related papers
- A comprehensive list can be found at

https://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
- Digital repositories

- Mint DOIs for source code copies and software release packages
- Examples are Zenodo, NanoHub

- Software and source code repositories
- Provide environment for code and software project management, collaboration tools and CI
- Examples are Git, GitHub, GitLab, BitBucket

- Foundations
- Provide environment for FOSS projects and apply defined processes for defined criteria/goals
- Examples are the Apache Foundation, Eclipse Foundation

- Institutes
- Offer software/code repositories and digital repositories for research results and development

https://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software

Seite 71

Publications related to software - an attempt

https://goo.gl/YvkH4D

Seite 72

Dive into software publications

- DataCite Search lists ~60.000 (~30.000?) software publication
→ https://search.datacite.org/works?resource-type-id=software

- Zenodo ~50.000 software publications
→ https://search.datacite.org/works?resource-type-id=software&data-center-id=cern.zenodo

vs. ~20.000 with Zenodo Search → https://zenodo.org/search?type=software

- FigShare ~4700, Bioconductor ~2900 etc.

https://search.datacite.org/works?resource-type-id=software
https://search.datacite.org/works?resource-type-id=software&data-center-id=cern.zenodo
https://zenodo.org/search?type=software

Seite 73

Software citation

- DataCite offers citation snippets for copy and paste after DOI minting
- Software citation starts at your screen before or without minting a DOI

- Force proper citation
- Follow FORCE11 recommendations for software
- Follow community practices

- Software vs. data in the context of citation
- Software is data, but it is not just data
- Data (in computing and information science): anything that can be processed by a computer
- Software: special kind of data that can be a creative, executable tool that operates on data
- Software & data are similar in with regard to credit and metrics, and both traditionally have not

been cited in publications
→ https://os.helmholtz.de/fileadmin/user_upload/os.helmholtz.de/Workshops/helmholtz_oswebinar42_katz.pdf

https://os.helmholtz.de/fileadmin/user_upload/os.helmholtz.de/Workshops/helmholtz_oswebinar42_katz.pdf

Seite 74

Citation - FORCE11 recommendations for software

- FORCE11 is a community to help facilitate the change toward improved
knowledge creation and sharing

- In 2016 the Software Citation Working Group produced a consolidated set of
citation principles in order to encourage broad adoption of a consistent policy
for software citation across disciplines and venues

- “Software citation principles” → https://doi.org/10.7717/peerj-cs.86 contains
- Principles (general statements)
- Use cases (where the principles should apply)
- Discussion (suggestions on how to apply principles)

https://doi.org/10.7717/peerj-cs.86

Seite 75

Citation - Principles 1

- Importance: Software should be considered a legitimate and citable product
of research. Software citations should be accorded the same importance in
the scholarly record as citations of other research products, such as
publications and data; they should be included in the metadata of the citing
work, for example in the reference list of a journal article, and should not be
omitted or separated. Software should be cited on the same basis as any
other research product such as a paper or a book, that is, authors should cite
the appropriate set of software products just as they cite the appropriate set of
papers.

Seite 76

Citation - Principle 2 & 3

- Credit and attribution: Software citations should facilitate giving scholarly
credit and normative, legal attribution to all contributors to the software,
recognizing that a single style or mechanism of attribution may not be
applicable to all software.

- Unique identification: A software citation should include a method for
identification that is machine actionable, globally unique, interoperable, and
recognized by at least a community of the corresponding domain experts, and
preferably by general public researchers.

Seite 77

Citation - Principle 4, 5 & 6
- Persistence: Unique identifiers and metadata describing the software and its

disposition should persist - even beyond the lifespan of the software they
describe.

- Accessibility: Software citations should facilitate access to the software itself
and to its associated metadata, documentation, data, and other materials
necessary for both humans and machines to make informed use of the
referenced software.

- Specificity: Software citations should facilitate identification of, and access to,
the specific version of software that was used. Software identification should
be as specific as necessary, such as using version numbers, revision
numbers, or variants such as platforms.

Seite 78

CITATION file and CITATION.cff ...

- Put a plaintext file named CITATION in the root directory of your code
- Put (human-readable) information in it about how to cite your software

→ https://peerj.com/articles/cs-86/#p-136
→ https://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files

- Examples → https://github.com/EIDA/webdc3, https://github.com/swcarpentry/2014-01-18-ucb/
- More examples → https://github.com/search?q=filename:CITATION

- CITATION.cff (Citation File Format)
- CFF is a human- and machine-readable format for CITATION files serialized in YAML

→ https://citation-file-format.github.io/, https://doi.org/10.5281/zenodo.1242911
- Example → https://github.com/citation-file-format/cff-converter-python
- More examples → https://github.com/search?q=filename:CITATION.cff

https://peerj.com/articles/cs-86/#p-136
https://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
https://github.com/EIDA/webdc3
https://github.com/swcarpentry/2014-01-18-ucb/
https://github.com/search?q=filename:CITATION
https://citation-file-format.github.io/
https://doi.org/10.5281/zenodo.1242911
https://github.com/citation-file-format/cff-converter-python
https://github.com/search?q=filename:CITATION.cff

Seite 79

Other attempts: codemeta.json, README.md ...
- JSON-LD / CodeMeta

- Provides a way of describing machine-readable information with semantic context
→ http://doi.org/10.5334/jors.by, https://codemeta.github.io/terms/

- Examples
→ https://github.com/codemeta/codemeta/blob/master/codemeta.json
→ https://github.com/citation-file-format/cff-converter-python/

- More examples → https://github.com/search?q=filename:codemeta.json
- README.md

- Include “How to cite” or “To cite in publications, please use” etc.
followed with your recommendation for citation

- Add a DOI badge with link if a DOI exists
- More to come?

- Attempts and variations “just” formed, still form and require adoption and use
- Be up to date, check what others do and how

http://doi.org/10.5334/jors.by
https://codemeta.github.io/terms/
https://github.com/codemeta/codemeta/blob/master/codemeta.json
https://github.com/citation-file-format/cff-converter-python/
https://github.com/search?q=filename:codemeta.json

Seite 80

Citation - community practices, e.g. R and CRAN

- Communities have their own conventions, get used to them
- Citing R And R Packages In Publications: citation(package)

→ https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation

- knitr example: citation('knitr') or toBibtex(citation('knitr'))
→ https://cran.r-project.org/web/packages/knitr/citation.html
- Citation file → https://github.com/yihui/knitr/blob/master/inst/CITATION
- Description file → https://github.com/yihui/knitr/blob/master/DESCRIPTION
- Google Scholar lists R packages

→ https://scholar.google.de/citations?user=lkjqsd4AAAAJ

- Former days Google Scholar example
→ https://www.youtube.com/watch?v=LwBZgjlKkbM

https://www.rdocumentation.org/packages/utils/versions/3.3/topics/citation
https://cran.r-project.org/web/packages/knitr/citation.html
https://github.com/yihui/knitr/blob/master/inst/CITATION
https://github.com/yihui/knitr/blob/master/DESCRIPTION
https://scholar.google.de/citations?user=lkjqsd4AAAAJ
https://www.youtube.com/watch?v=LwBZgjlKkbM

Seite 81

Metadata for software publications
- DOI minting requires metadata information

→ Use https://search.datacite.org/works?resource-type-id=software
→ Select/click a software listed in results and
 open a “Download” option, e.g. JSON-LD

- Zenodo offers a user interface
→ It’s totally up to you and under your control
→ https://zenodo.org/deposit/new

- Further reading
- DataCite

→ https://blog.datacite.org/metadata-schema-4-1/
→ https://schema.datacite.org/meta/kernel-4.1/

- CodeMeta
→ https://codemeta.github.io/terms/

https://search.datacite.org/works?resource-type-id=software
https://zenodo.org/deposit/new
https://blog.datacite.org/metadata-schema-4-1/
https://schema.datacite.org/meta/kernel-4.1/
https://codemeta.github.io/terms/

Seite 82

DOI versioning with Zenodo

- DOI versioning allows to cite all versions and a specific version of a record
and allows to edit/update the record’s files after the initial publication

- How does DOI versioning work?
- When you publish an upload on Zenodo for the first time, Zenodo registers two DOIs

- a DOI representing the specific version of your record
- a DOI representing all of the versions of your record

- Afterwards, Zenodo registers a DOI for every new version of your upload
- Which DOI should I use in citations?

- Ensure that other researchers can access the exact research artefact for reproducibility
- Normally always use the DOI for the specific version of your record in citations
- By default, Zenodo uses the specific version to generate citations

- Explore
→ http://help.zenodo.org/#versioning
→ https://doi.org/10.5281/zenodo.592020

http://help.zenodo.org/#versioning
https://doi.org/10.5281/zenodo.592020

Seite 83

Best practices for software citation
- Make your software citable

- Publish it – if it’s on GitHub, follow steps in https://guides.github.com/activities/citable-code/
- Otherwise, submit it to Zenodo or somewhere else, with appropriate metadata, and get a DOI
- Create a CITATION file, update your README, tell people how to cite
- Secondary / workaround, write a software paper and ask people to cite that

- Cite someone else’s software in a paper
- Check for a CITATION file or README; if this says how to cite the software itself, …
- … if not, do your best following the principles

- Try to include all contributors to the software (maybe by just naming the project)
- Try to include a method for identification that is machine actionable, globally unique,

interoperable (perhaps a URL to a release, a company product number)
- If there’s a landing page that includes metadata, point to that, not directly to the software

(e.g. the GitHub repo URL)
- Include specific version/release information

- If there’s a software paper, can cite this too, but not in place of citing the software

https://guides.github.com/activities/citable-code/

Seite 84

Wrap-up

Seite 85

An incomplete checklist
- Select a proven and strong licence, e.g. GPL, EUPL, BSD, Apache

- Be specific, name the license and version
- Check compatibility for distribution and resolve conflicts

- Check up- and downstream compatibility; consider dual licensing
- Check variable compatibility or exception list, e.g. provided in appendix

- Use additional licence provisions, e.g.
- Add provisions for cases when distribution isn’t enforced, e.g. for publications

- Structure the software project / bundle a release
- Document dependencies and licenses
- Attribute other work
- Enable citation

- Publish; a DOI is just a number
- Ensure that all versions or releases can be referred at all and individually (versioning)

- Start somehow with the recommendations given
- Spend time to make your own experiences and talk with others

Seite 86

Group work

Seite 87

Group work A

- Polish and finish your release
- Anything is valid to gain experiences, don’t be shy

- License your code
- Define the purpose
- Consider dependencies and compatibility

- Enable citation
- Publish

- Reserve a DOI
- Update citation and readme information
- Finish

Creative Commons Attribution 3.0 Germany
https://creativecommons.org/licences/by/3.0/de/deed.en

Which questions do you have for us?
Contact information:
Martin.Hammitzsch@GFZ-Potsdam.de

mailto:martin.hammitzsch@gfz-potsdam.de

