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" WHEN ALL ELSE FAILS, LOOK 
AT THE SCHRODINGER 
EQUATION." -- RUSSELL T. PACK, 
APRIL 1978



DVR techniques for solving the Schrödinger equation

• Numerous nano-world 
phenomena are inherently 
quantum
• Their description and 

quantitative treatment requires 
usage of the apparatus of 
quantum mechanics.

• The Schrödinger equation (a 
“quantum analog” to the 
famous Newton’s equation in 
classical physics).

• For a stationary state of the 
system the Schrödinger equation 
has the form

!𝐻𝜓 = 𝐸𝜓
The Hamiltonian consists of the kinetic 
energy operator (!𝐾 𝑞 ) and the potential 
energy operator ( $𝑉 𝑞 ):

!𝐻 𝑞 = !𝐾 𝑞 + )𝑉 𝑞



DVR techniques for solving the Schrödinger equation

• WHY DVR?????

• UPPSALLA, late 2009: “We’ve got to be more modern, and avoid the 
variational approach, which is so exploited!”

• 2010-2011: “It has been used in most of the published high-quality papers 
(and the guys from the University of Stockholm have used it extensively)”

• Just kidding, of course, BUT: There has to be some real reason for the 
advantageous usage of DVR (as compared to some other approaches)!



DVR techniques for solving the Schrödinger equation

The solution may be sought within a finite basis set of n functions (𝜑! 𝑞 ), 
as in the variational approach:

• The expansion coefficients ci and the 
set of eigenenergies can be found by 
solving the matrix eigenvalue problem 

• Assuming an orthonormal set of 
basis functions

𝜑! 𝜑" = #𝜑!∗ 𝑞 % 𝜑" 𝑞 𝑑𝑞 = 𝛿!" 𝐇𝐜 = 𝐸𝐜

c is the column n-vector [c1, c2,…, cn]T, 
while H is n × n square matrix 
containing the matrix elements of the 
Hamiltonian Hij, given by

𝐻!" = 𝜑! )𝐻 𝜑" = #𝜑!∗ 𝑞 )𝐻 𝜑" 𝑞 𝑑𝑞

𝑞 𝜓 =+
!$%

&

𝑐! % 𝑞 𝜑!



The finite basis representation (FBR)

Such matrix-representation is often referred to as variational basis representation (VBR).

As a consequence of the orthonormality of the basis set functions, it can be 
straightforwardly shown that the expansion coefficients are given by:

𝑐& = 𝜑& 𝜓 = ( 𝜑& 𝑞 𝑞 𝜓 𝑑𝑞



The finite basis representation (FBR)
• Considering a Hamiltonian of the 

form:
• )𝐻' 𝑞 : the harmonic oscillator 

“zeroth order” Hamiltonian
)𝐻 𝑞 = )𝐻' 𝑞 + .𝑉′ 𝑞 $𝑉′ 𝑞 : the “complicated” potential 

energy part

The most complicated part of the calculation involves computation of the matrix elements:

𝑉′() = 𝜓( -𝑉′ 𝜓) = (𝜓(∗ 𝑞 -𝑉′ 𝜓) 𝑞 𝑑𝑞

Any basis set that consists of orthogonal polynomials can be approximated by the so-
called Gaussian quadratures technique. Approximating, however, the matrix elements by 
any quadrature technique, leads to the consequence that the results need not be the 
upper limits of the exact (true) eigenvalues. Such representation of the potential energy 
operator is called finite basis representation (FBR), to distinguish from variational basis 
representation (VBR)



The finite basis representation (FBR)

Define an n-point quadrature such consisting of the abscissa set of values {x1, x2,…, xn} and 
the corresponding weights {w1, w2,…, wn}. Such n-point quadrature leads to:

𝑉() ≈ 𝑉()+,- = /
&./

0

𝑤& 𝜓(∗ 𝑥& 𝑉 𝑥& 𝜓) 𝑥&

The quadrature approximation is a straightforward method to compute the potential 
energy matrix elements



The finite basis representation (FBR)

Defining 𝐴(! ≡ 𝑤(
⁄% *𝜓! 𝑥( 𝑉!"

#$%& = 𝛿!"𝑉 𝑥!

𝑉$'
()* = 4

!+,

-

𝐴!$
∗ 𝑉!!

#$%&𝐴!'

𝑽()* = 𝑨/𝑽#$%&𝑨
The method of Harris, Engerholm and Gwinn for computation of potential 
energy matrix elements is actually equivalent to using the Gaussian 
quadrature approach in a basis set of orthogonal polynomials. In the FBR, the 
potential energy matrix is written as a unitary transformation of a diagonal 
matrix



The discrete variable representation (DVR) technique 

• Apply unitary transformation such that 
the potential energy matrix is diagonal

• Evaluate the DVR functions at the 
quadrature points

𝜙( 𝑥 =+
!$%

&

𝐴(! 𝜓! 𝑥 𝜙( 𝑥+ =+
!$%

&

𝐴(! 𝜓! 𝑥+ =+
!$%

&

𝐴(!𝐴+!𝑤+
,%* = 𝛿(+𝑤+

,%*

Any operator which is multiplicative in coordinate representation is diagonal in this basis

𝜙! 𝑉 𝜙" = +
($%

&

𝑤( 𝜙! 𝑥( 𝑉 𝑥( 𝜙" 𝑥( = +
($%

&

𝛿!(𝑉 𝑥( 𝛿"( = 𝑉 𝑥( 𝛿!"



The discrete variable representation (DVR) technique 

• The kinetic energy matrix is not diagonal in DVR (the kinetic energy operator is not 
multiplicative in coordinate representation)

In the case of one-dimensional problems, the advantage of DVR over FBR is questionable

However, in multidimensional problems, the advantage of DVR becomes immediately 
evident



Schrödinger API 
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• RESTful web service for solving multidimensional time-independent 
Schrödinger equation using Hermite DVR approach

• solution of one-dimensional, two-dimensional and three-dimensional time-
independent Schrödinger equation based on the Gauss-Hermite Discrete Variable 
Representation (DVR) approach

Service Description - Schrödinger API  



The solution of 1D Schrödinger equation is illustrated in the case of following 
model potentials:

• Morse potential
• Simple Harmonic Oscillator (SHO) potential
• Sombrero potential (Mexican hat)
• Woods-Saxon potential

Solutions of 2D and 3D Schrödinger equations are illustrated for the following two 
model potentials: 

• 2D Morse potential
• 2D SHO potential
• 3D Morse potential

Service Description - Schrödinger API 

Agenda



One-dimensional Morse potential V(x):
V(x) = D * (1 - exp(-a * (x - x0)))^2 - D

1D Morse potential

Service API 

Parameters:
npts - number of points (default value 10)
D - dissociation depth (default value 3.0)
a - inverse "width" of the potential (default value 
0.5)
x0 - equilibrium bond distance (default value 0.0)
prec - precision (default value 6)



One-dimensional version of the sombrero potential ( a < 0 and b > 0 ): 
V(x) = a * x^2 + b * x^4

1D Sombrero potential

Service API

Parameters:
npts - number of points (default value 10)
D - dissociation depth(default value 3.0)
a - inverse "width" of the potential (default value 0.5)
x0 - equilibrium bond distance (default value 0.0)
prec - precision (default value 6)



Woods-Saxon potential
V(r) = - V0 / (1. + exp((r - R) / z)) where R = r0 * A^(1/3)

1D Woods-Saxon potential

Service API

Parameters:
npts - number of points (default value 5)
V0 - potential depth (default value 50.0)
z - surface thickness (default value 0.5)
r0 - rms nuclear radius (default value 1.2)
A - mass number (default value 16)
prec - precision (default value 8)



Parameters:
npts - number of points (default value 5)
D1 - dissociation depth for x (default value 3.0)
a1 - inverse "width" of the potential for x (default 
value 0.5)
x0 - equilibrium bond distance for x (default value 
0.0)
D2 - dissociation depth for y (default value 3.0)
a2 - inverse "width" of the potential for y (default 
value 0.5)
y0 - equilibrium bond distance for y (default value 
0.0)
prec - precision (default value 6)

2D Morse potential

Service API



2D Morse potential

Service API



Parameters:

npts - number of points (default value 5)
D1 - dissociation depth for x (default value 3.0), D2 - dissociation depth for y (default value 3.0), D3 - dissociation 
depth for z (default value 3.0)
a1 - inverse "width" of the potential for x(default value 0.5), a2 - inverse "width" of the potential for y(default 
value 0.5), a3 - inverse "width" of the potential for z(default value 0.5)

x0 - equilibrium bond distance for x (default value 0.0), y0 - equilibrium bond distance for y (default value 0.0), z0 -
equilibrium bond distance for z (default value 0.0)

prec - precision (default value 6)

3D Morse potential

Service API



Jupyter notebook link:
https://notebooks.finki.ukim.mk/user/user1/notebooks/SchrodingerAPI.ipynb

User: user1
Password: User1DEMO

Service DEMO

https://notebooks.finki.ukim.mk/user/user1/notebooks/SchrodingerAPI.ipynb


Practical Example
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• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example

̇⃗𝑟 O =
𝑚!

𝑚
6 ̇⃗𝑟 ̇⃗𝑟 H =

𝑚"

𝑚
6 ̇⃗𝑟 𝑟 = 𝑟 H − 𝑟 O 𝑉 = 𝑓 𝑟"!

𝑉 𝑟"! = 𝐷 6 1 − 𝑒𝑥𝑝 −𝑎 6 𝑟"! − 𝑟"!,$
%
− 𝐷



• A diatomic intramolecular oscillator may be conveniently described by a Morse 
potential with the following parameters: 
• D = 0.176 (a.u.)
• a = 1.02 (a.u.)-1
• x0 = 1.4 (a.u.)

• Find the ground state energy level of this oscillator, as well as the first two excited 
levels

Practical example



• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example
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• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example

Static approach ADMP Exp. HCTH

(static)
B3LYP CAM-B3LYP DFTB(A) DFTB(A)

Betaine(+) 3534.6 3575.6 3486.7 3473.8 3554 3509.1

Betaine(+)OH…H2 3447.7 3483.0 3412.7 3405.2 3514 3466.0

Δv -86.9 -92.6 -74.0 -68.6 -40 -43.1

Betaine(+)CH3…H2 3551.4 3593.1 3486.9 3475.9 3558 3525.8

Δv 16.8 17.5 0.2 2.1 4 16.7



Contact

• Bojana Koteska 
• bojana.koteska@finki.ukim.mk

• Ljupco Pejov
• ljupcop@pmf.ukim.mk

• Anastas Mishev
• anastas.mishev@finki.ukim.mk 
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